Ribonucleotide reductase inhibitors and future drug design.

نویسندگان

  • J Shao
  • B Zhou
  • Bernard Chu
  • Y Yen
چکیده

Ribonucleotide reductase (RR) is a multisubunit enzyme responsible for the reduction of ribonucleotides to their corresponding deoxyribonucleotides, which are building blocks for DNA replication and repair. The key role of RR in DNA synthesis and cell growth control has made it an important target for anticancer therapy. Increased RR activity has been associated with malignant transformation and tumor cell growth. Efforts for new RR inhibitors have been made in basic and translational research. In recent years, several RR inhibitors, including Triapine, Gemcitabine, and GTI-2040, have entered clinical trial or application. Furthermore, the discovery of p53R2, a p53-inducible form of the small subunit of RR, raises the interest to develop subunit-specific RR inhibitors for cancer treatment. This review compiles recent studies on (1) the structure, function, and regulation of two forms of RR; (2) the role in tumorigenesis of RR and the effect of RR inhibition in cancer treatment; (3) the classification, mechanisms of action, antitumor activity, and clinical trial and application of new RR inhibitors that have been used in clinical cancer chemotherapy or are being evaluated in clinical trials; (4) novel approaches for future RR inhibitor discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents.

Ribonucleotide Reductase (RNR) plays a critical role in DNA synthesis, and is a well-recognized target for cancer chemotherapeutic and antiviral agents. RNR inhibition precludes DNA transcription and repair, from which results cell apoptosis. Many regulation checkpoints concerning RNR activity have been unravelled through the last two decades, with potential use to inhibit enzyme activity. This...

متن کامل

Investigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase

Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...

متن کامل

Molecular Strategies of Deoxynucleotide Triphosphate Supply Inhibition Used in the Treatment of Gynecologic Malignancies.

Chemotherapies targeting deoxynucleotide triphosphate synthesis are of high medical interest in the treatment of gynecologic malignancies. In this article, we focus on targeted inhibitors of ribonucleotide reductase, an enzyme in charge of ribonucleotide reduction to their corresponding deoxyribonucleotide to be used as the building blocks of DNA. We also discuss human clinical trials have util...

متن کامل

A dityrosyl-diiron radical cofactor center is essential for human ribonucleotide reductases.

Ribonucleotide reductase catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA biosynthesis. A tyrosine residue in the small subunit of class I ribonucleotide reductase harbors a stable radical, which plays a central role in the catalysis process. We have discovered that an additional tyrosine residue, conserved in human small subunits hRRM2 and p53R2, is required for the r...

متن کامل

Herpes Simplex Type 1 Ribonucleotide Reductase

Several known inhibitors of mammalian ribonucleotide reductase were studied for their interactions with herpes simplex virus type 1 (HSV-1) ribonucleotide reductase. MAIQ (4-methyl-5-amino-l-formylisoquinoline thiosemicarbazone) produced apparent inactivation of HSV-1 ribonucleotide reductase. Only catalytically cycling, not resting, enzyme could be inactivated. Double reciprocal replots of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current cancer drug targets

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2006